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ABSTRACT

In recent years, the utilization of machine learning (ML) techniques in soil science has seen significant
growth due to the availability of extensive soil data and open-source algorithms. ML methods have become
essential tools for analyzing soil-related information. This paper explores the diverse applications of ML in
soil science to uncover trends and patterns in the research literature. The study aims to elucidate how ML
is employed in soil science and identify areas for further investigation. Key findings reveal a substantial
increase in ML usage, particularly in developed countries, across various applications including remote
sensing, soil organic carbon prediction, water dynamics modelling, contamination assessment, and erosion
analysis. Advanced ML techniques often outperform simpler methods, capturing the complex, non-linear
relationships inherent in soil systems. However, precautions against overfitting and the necessity for
interpretable models are emphasized to ensure reliability and understanding. Collaboration between disciplines,
coupled with high-quality soil data and domain-specific feature engineering, is crucial for advancing ML
applications in soil science and promoting sustainable land management practices.

Key words : Machine learning (ML), Soil science, Remote sensing, Soil organic carbon, Advanced ML

techniques.

Introduction

Over the past decade, the field of soil science has
undergone a remarkable transformation, largely propelled
by the rapid advancement of machine learning (ML)
techniques. Machine learning, a subset of artificial
intelligence, offers powerful tools for extracting valuable
insights from vast and complex datasets. In the realm of
soil science, where data on soil properties, composition,
and dynamics are abundant but often heterogeneous and
multifaceted, the application of ML holds immense
promise.

With the proliferation of soil data collected from
diverse sources such as remote sensing platforms, field
surveys, and laboratory experiments, the need for robust
analytical methods to decipher this wealth of information
has never been greater. ML algorithms, ranging from
traditional regression models to sophisticated deep

learning architectures, have emerged as indispensable
tools for analyzing soil-related data, predicting soil
properties, and uncovering underlying patterns and
relationships. The application of machine learning (ML)
in soil science has seen significant growth, particularly in
developed countries (Padarian, 2020). ML techniques
have been used in diverse applications, including remote
sensing, soil organic carbon prediction, water dynamics
modeling, contamination assessment and erosion analysis.
Advanced ML methods, such as neural networks and
support vector machines, have been found to outperform
simpler approaches, capturing non-linear relationships in
soil data (Padarian, 2020). However, there are challenges
in the application of ML in digital soil mapping, such as
the need for interpretability and the inclusion of pedological
knowledge in the ML algorithm (Alexandre et al., 2020).
These challenges need to be addressed to ensure the
credibility and scientific consistency of ML in soil science.
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In this comprehensive analysis, we delve into
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highlighting areas where further research and
development are needed. By elucidating the
transformative potential of ML in enhancing our
understanding of soil processes, optimizing land
management practices, and mitigating environmental risks,
this analysis aims to catalyze continued innovation and
collaboration in the field of soil science.

We categorize the applications of ML in soil science
into the following topics for better understanding:

Applications of ML in Remote Sensing

Remote Sensing and Soil Organic Carbon (SOC)
: Remote sensing platforms, such as satellites and drones,
play a crucial role in gathering extensive data pertaining
to soil properties over large geographic areas. Machine
learning (ML) algorithms, encompassing diverse
methodologies like neural networks (NN), support vector
machines (SVM), and random forests, offer effective
tools for processing and interpreting this wealth of data.
ML models facilitate the prediction of soil organic carbon
(SOC) content by integrating spectral information derived
from remote sensing with ground-based measurements.

Mostafa et al. (2020) tested six different programs
to see which one could predict soil carbon levels the best
(Fig. 1). They used a bunch of data about things like
weather, plants, and geography to help the computer make
predictions. They found out that one program called “deep
neural networks” was the best at predicting soil carbon
levels accurately. They also figured out that factors like
precipitation (rainfall), vegetation, temperature and land
use affect soil carbon levels the most.

Prior research has extensively explored various NN
architectures for the retrieval of SOC and soil moisture
(SM), including Back Propagation Neural Network
(BPNN), Radial Basis Function (RBF), Multi-Layer
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Fig. 2 : Gully erosion susceptibility maps (GESMs) showing (a) RF

model, (b) GBRT model, (c) TE model, (d) NBT model (Source:
Sahaetal., 2020).

Perceptron (MLP), and Extreme Learning Machine
(ELM) (Daniel et al., 2003). Conversely, the utilization
of deep learning (DL) models, notably Convolutional
Neural Network (CNN) and Recurrent Neural Network
(RNN), for SOC/SM mapping remains limited, with only
a few studies addressing this approach (Tsakiridis et al.,
2020; Singh and Kasana, 2019), despite their prominence
in the DL domain.

The adoption of NN and the transition towards DL
models, such as CNN and RNN, for SOC analysis
leveraging remotely sensed data, presents notable
advantages and challenges. Traditional NN models
encounter difficulties during training, particularly with a
high number of layers, necessitating substantial memory
resources and leading to slow model evaluation.
Conversely, DL approaches are hindered by factors
including the requirement for large training datasets,
computational complexity, technical expertise, data volume
considerations and the risk of overfitting.

Anticipated advancements in both commercial and
freely accessible remotely sensed “big data” are poised
to foster broader acceptance of novel methodologies like
DL in SOC analysis, promising enhanced insights and
applications in the field.

Terrain Characterization : Machine learning (ML)
and deep learning (DL) methodologies are integral for
processing remotely sensed data to estimate various soil
properties, including terrain strength. These approaches
significantly enhance accuracy, with algorithms like ridge
regression, partial least squares (PLS) and convolutional
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neural networks (CNN) playing crucial roles. Integrating
time series remote sensing data with laboratory spectral
measurements notably improves predictions. In object
detection, Faster-RCNN excels for its influence and
superior accuracy. Adaptations address specific
challenges, such as identifying small objects and optimizing
training. DL applications, categorized into tasks like
classification, object detection and segmentation, leverage
CNNs for feature learning, reducing manual feature
engineering (Badea et al., 2016). DL-based object
detection methods, like Region-based Fully Convolutional
Network (R-FCN) and Faster-RCNN, continually
enhance accuracy and efficiency, with ongoing research
refining their performance (Han et al., 2017b).

Predictive Modeling and Carbon Sequestration
: ML models learn from Earth observation data to predict
soil characteristics in spatial and temporal dimensions. Soil
organic carbon (SOC) plays a critical role in the global
carbon cycle and climate mitigation.ML-based SOC
mapping aids sustainable land management and climate
change efforts. In the context of carbon sequestration,
machine learning approaches have gained prominence
for estimating forest aboveground biomass (AGB) using
remote sensing-based data. A recent study by Cheng et
al. (2020) demonstrates the application of machine
learning algorithms within the Google Earth Engine (GEE)
platform. Specifically, they employed Random Forest
(RF), Classification and Regression Trees (CART),
Gradient Boosting Trees (GBT) and Support Vector
Machine (SVM). Using these algorithms, the entire
Yunnan Province in China was classified into seven
categories, including broadleaf forest, coniferous forest,
mixed broadleaf-coniferous forest, water bodies, built-
up areas, cultivated land and other types. The RF
algorithm outperformed others in terms of accuracy and
reliability, making it the most suitable choice for estimating
aboveground carbon storage in forests using remote
sensing data. The study further developed regression
models for carbon estimation, achieving satisfactory R?
values for different forest types. These findings highlight
the potential of machine learning in automating carbon
sequestration assessments using remote sensing data.

In the spatial mapping of aboveground biomass
(AGB) and carbon in the urban forests of Jodhpur city,
Rajasthan, India, machine learning (ML) regression
algorithms including Support Vector Machine (SVM),
Random Forest (RF), k-Nearest Neighbors (kNN) and
XGBoost have been explored. This investigation employs
field-based data along with correlations between these
algorithms and spectral and textural variables derived from
Landsat 8 OLI data. The findings suggest that ML-based

regression algorithms exhibit superior potential compared
to traditional linear and multiple regression techniques
for the spatial mapping of AGB and carbon in urban
forests, particularly in arid regions. Uniyal et al. (2021).
Innovative approaches in Remote sensing and machine
learning for enhanced soil analysis and prediction is
presented in Table 1.

Recent advancements of ML in Soil Organic carbon

Machine learning (ML) techniques have significantly
advanced our understanding of soil organic carbon (SOC)
and its spatial distribution. Here are some examples:

Spatial Prediction of SOC : In a study by John et
al., ML algorithms (including artificial neural networks,
support vector machines, cubist regression, and random
forests) were used to predict SOC variability inan alluvial
soil. Predictors such as effective cation exchange capacity
(ECEC), base saturation (BS), elevation and land surface
temperature (LST) were considered. The best-
performing model was random forests (R? = 0.68),
highlighting ML’s effectiveness in predicting SOC
content.

Deep Learning Optimization : Researchers
integrated deep learning, data assimilation, and vertical
soil profiles to optimize the representation of SOC across
the conterminous United States. This novel approach
improved the accuracy of SOC modeling and provided
valuable insights into carbon dynamics.

Quantile Regression Forests for Argentina : A
data-driven method using quantile regression forests was
applied to map SOC stocks in space and time for
Argentina. Annual SOC stock predictions at 0-30 cm
depth were achieved at 250 m resolution between 1982
and 2017.

In short, ML empowers soil scientists to predict SOC,
optimize models, and map carbon stocks, contributing to
sustainable soil management and environmental
monitoring (Table 2).

Recent Advancement of ML about Soil Water
Dynamics

Machine learning (ML) techniques play a crucial role
in understanding soil water dynamics, aiding precision
agriculture, water management and environmental
conservation:

Data-Facilitated Numerical Method for
Richards Equation : The Richards equation models
spatiotemporal water flow dynamics in soil. Anovel data-
facilitated numerical method, called the D-GRW (Data-
facilitated global Random Walk) method, integrates
adaptive linearization, neural networks, and global random
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Table 1 : Research studies on soil monitoring and prediction using machine learning in remote sensing.

Topic

Reference

Findings

Remote Sensing and Soil Organic
Carbon

Padarian etal.
(2020)

Machine Learning models demonstrated an exceptional accuracy
of 82% in predicting soil organic carbon content using spectral
data.

Soil Salinity Prediction in
Drylands - Integrating Active and
Passive Remote Sensing Data

Jiangetal. (2022)

Among various machine learning models, Random Forest exhibited
superior performance, achieving an impressive 88% accuracy in
forecasting soil salinity in arid regions.

Surface Soil Moisture Mapping -
A Machine Learning-based
Approach

Ondieki et al. (2023)

Leveraging Landsat-8 optical and thermal imagery along with
Copernicus Sentinel-1 C-Band SAR data, an integrated machine
learning methodology achieved remarkable spatial resolution (50
meters) for surface soil moisture mapping.

Soil Carbon Sequestration
Potential in Western Ghats, India

Dharumarajan et al.
(2024)

- Soil Organic Carbon (SOC) stock prediction (0—-100 cm depth):
Ranged from 5.2 kg/m? to 26.18 kg/m? - Carbon Sequestration
Potential (CSP) prediction (0—-100 cm depth): Varied from 4.89 kg/m?
to 28.69 kg/mz2 - Theoretical carbon storage: Estimated at 256 Tg
(top 30 cm) and 1089 Tg CO, equivalents (top 100 cm)

Alpine Grassland Soil Nutrient
Storage and Sequestration -
Analysis based on fielyadad
measurements

Liuetal. (2022)

Robust field measurements enabled the quantification of organic
carbon, total nitrogen, and total phosphorus storage and
sequestration in soils across various degradation levels in Maqu
County, Gannan.

Novel SOC Models for Sparse
Time Series Data

Davoudabadi et al.
(2024)

- Simplified models exhibited superior predictive performance
compared to complex counterparts in estimating Soil Organic Carbon
(SOC). - Highlighted SOC’s pivotal role as a global atmospheric
carbon sink.

Soil Organic Carbon Mapping
in the Mid-Himalayas -
Integration of soil-forming
factors

Yadav etal. (2023)

Advanced digital mapping techniques facilitated accurate mapping
of Soil Organic Carbon (SOC) distribution alongside soil texture in
the challenging terrain of the Mid-Himalayas.

Among various machine learning models, Random Forest exhibited

Soil Salinity Prediction in
Drylands - Integrating Active
and Passive Remote Sensing
Data

Mohamed et al.
(2023)

superior performance, achieving an impressive 88% accuracy in
forecasting soil salinity in arid regions.

Surface Soil Moisture Mapping

A Machine Learning
-Based Approach

Leveraging Landsat-8 optical and thermal imagery along with
Copernicus Sentinel-1 C-Band SAR data, an integrated machine
learning methodology achieved remarkable spatial resolution (50
meters) for surface soil moisture mapping.

walk to solve this highly nonlinear partial differential
equation. The D-GRW method accurately predicts soil
water movement, essential for smart irrigation and drought
prevention.

Extreme Learning Machine (ELM) for Soil
Water Content (SWC) estimation : Liu et al. (2014)
used ELM, an ML algorithm, to estimate SWC. ELM
efficiently predicts SWC based on input features, making
it a cost-effective method. ELM-based SWC estimation
aids efficient water resource management (Table 3).

Broad Applications of ML in Hydrology and Soil
Moisture : Beyond water dynamics, ML has been
applied to soil moisture estimation (Bhogapurapu et al.,

2022). ML also enhances soil data extraction, water quality
variables, human water management, and vadose zone
hydrology.

Machine Learning for
Assessment

Soil Contaminants

The research papers on soil quality with machine
learning cover various aspects of soil science, showcasing
the integration of advanced computational techniques into
this field. These studies explore topics such as soil organic
carbon prediction, soil salinity assessment, surface soil
moisture mapping, carbon sequestration potential, soil
erosion analysis and more (Padarian et al., 2020;
Mohamed et al., 2023; Davoudabadi et al., 2024;
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Research Paper

Key Findings Authors

from Remote Sensing

A Deep Learning Approach to Estimate SOC

Utilizes deep neural networks (DNNs) for

remote SOC estimation using satellite imagery | (2024)

Marko Pavlovic et al.

by Stacking ML Models

Improving Spatial Prediction of SOC content

Proposes ensemble technique for better
prediction accuracy

Taghizadeh-Mehrjardi
etal. (2020)

Algorithms in Northern Iran

Predicting and Mapping SOC using ML

Compares SVM, ANN, RF, XGBoost and
DNN models; DNN performs best

Mostafa Emadi et al. (2020)

Table 3: Machine learning for Soil Water content estimation.

Topic

Description

References

Machine Learning Algorithms

Explore various ML algorithms applied in hydrology, including: Long
Short-Term Memory (LSTM) Models: Effective for streamflow
prediction due to their ability to capture temporal dependencies. Random
Forests: Used for feature selection and modeling soil moisture
dynamics.Convolutional Neural Networks (CNNs): Applied to remote
sensing data for soil moisture estimation.

Leyetal. (2024)

Soil Moisture Dynamics

Discuss the relationship between internal cell states of LSTM models
and soil moisture content. LSTM cells maintain memory of past inputs,
which can be related to soil moisture variations.

Leyetal. (2024)

SWCC Prediction

Simplify SWCC prediction using informatics and ML techniques.
Researchers have explored data-driven approaches to estimate SWCC
parameters.

Bakhshi et al.
(2023)

Numerical Models

Compare simple soil water balance models (e.g., Thornthwaite method)
with process-based models (e.g., HYDRUS) for estimating soil water

Fatemeh et al.
(2016)

content. Highlight advantages and limitations of each approach.

Dharumarajan et al., 2024; Nguyen and Chen, 2021).
Machine learning algorithms, including random forests,
support vector machines, neural networks, and deep
learning models are employed to analyze soil data obtained
from remote sensing platforms, field measurements and
laboratory experiments (Padarian et al., 2020; Liu et al.,
2014). These methodologies contribute to accurate
prediction and mapping of soil properties, enabling better
understanding of soil dynamics and supporting sustainable
land management practices (Davoudabadi et al., 2024;
Dugmore et al., 2009; Abdullah et al., 2017). Overall,
the papers demonstrate the significant impact of machine
learning in advancing soil science research and
environmental conservation efforts.

Soil health is crucial for sustainable agriculture, but
contaminants can adversely affect soil quality and
productivity. ML techniques offer insights into soil
contamination assessment, enabling precise predictions
and informed management strategies. For instance,
classification algorithms like Decision Trees and Naive
Bayes have been applied to hydrological and remote
sensing data to predict soil moisture accurately. These
predictions aid in optimizing irrigation practices and

conserving water resources (Table 4).

Additionally, ML applications extend beyond soil
moisture prediction. Digital soil mapping (DSM) leverages
ML to predict soil types and properties, while infrared
spectral data analysis infers soil characteristics. These
tools enhance our understanding of soil distribution and
controls, contributing to effective soil management.

Machine Learning for Erosion and Parent Material

Soil erosion is a critical environmental issue, and
machine learning (ML) techniques have been
instrumental in understanding and mitigating its impact.
Soil erosion, caused by factors like water flow, wind, and
human activities, threatens land productivity and
ecosystem health. The study by Saha et al. (2020)
employs ensemble machine learning algorithms to predict
the spatial susceptibility to gully erosion, classifying the
susceptibility into low, medium, high and very high
categories. Models such as Random Forest (RF), Gradient
Boosting Regression Trees (GBRT), Naive Bayes Tree
(NBTree), and Tree Ensemble (TE) are utilized. Results
indicate that RF identifies 2.29% of the area with very
high susceptibility, while elevation and rainfall are
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Fig. 1: Actual vs. predicted values of soil organic carbon
using six machine learning algorithms: (A) SVM, (B)
ANN, (C) Cubist, (D) RF, (E) XGB, and (F) DNN. (SOC:
soil organic carbon; SVM: support vector machine;
Cubist: regression tree; XGBoost: extreme gradient
boosting; RF: random forest; ANN: artificial neural
networks; DNN: deep neural networks).

highlighted as significant contributing factors. In contrast,
NBT finds 70.45% of the area with low susceptibility.
GBRT and TN models show similar trends, emphasizing
elevation and rainfall as crucial factors in gully erosion
occurrence. The study underscores the impact of rainfall
runoff on gully formation in the region, especially after
intense monsoonal events following hot and dry
summers.Gully erosion susceptibility maps (GESMs)
showing (a) RF model, (b) GBRT model, (c) TE model,
(d) NBT model used by the author is presented in Fig. 2.

ML models offer predictive capabilities by analyzing
various factors. Here are some notable examples:

DEM- and GIS-based Analysis : Researchers in
Taiwan studied soil erosion depth using morphometric
factors from a digital elevation model (DEM) and
environmental data. They applied ML models (random
forest and gradient boosting machine) to predict erosion
depth validated against field measurements. The gradient
boosting machine performed best, aiding in conservation
planning.

Predictive Modeling in Iceland : Dugmore et al.
(2009) developed conceptual soil erosion models for
different landscapes in southern Iceland. Their work
demonstrates how ML can enhance erosion predictions
across diverse terrains.

Indicator Identification in Portugal : In northern
Portugal, ML models (support vector machine and random
forest) were used to identify indicators of soil erosion in
sub-watersheds. The study focused on soil erosion by
water, using the revised universal soil loss equation
(RUSLE?2015) as the target variable.

Smart Soil Erosion Modeling : Integrating
machine learning algorithms (random forest, artificial
neural network, classification tree analysis, and
generalized linear model), researchers created soil erosion
maps. These models aid in understanding erosion patterns
and planning conservation efforts.

In summary, ML empowers soil scientists to assess
erosion risks, prioritize conservation efforts, and safeguard
our natural resources. By leveraging data-driven
approaches, we can combat soil degradation and promote
sustainable land use (Table 5).

Advanced ML Methods

Sophisticated machine learning (ML) approaches,
such as neural networks and support vector machines
(SVMs), outperform simpler methods due to their ability
to capture non-linear relationships in soil data.

Neural Networks (NNs) : NNs, inspired by
biological neurons, excel at modeling complex, non-linear
relationships. They consist of interconnected layers that
learn from data to make predictions. For soil-related tasks,
NNs can handle intricate interactions between soil
properties, climate, and land use. Predicting soil moisture
content based on rainfall patterns, temperature, and
vegetation indices using a multi-layer feed-forward neural
network.

Support Vector Machines (SVMs) : SVMs are
powerful classifiers that find optimal hyperplanes to
separate data points. They work well for both linear and
non-linear problems. SVMs applied to soil classification
based on spectral reflectance data from remote sensing.
SVMs can handle complex decision boundaries, capturing
soil type variations.

Comparing Performance : Researchers have
compared regression models like SVM, NNs, and
traditional linear regression for predicting soil properties
(e.g., pH, organic matter). NNs and SVMs consistently
outperform linear models, especially when soil
relationships are intricate. SVMs, with their kernel trick,



Machine Learning Innovations in Soil Science 2739

Table 4 : Advances in Soil contaminant prediction models.

Reference Method/Model Soil contaminant Key findings
Shunqui (2024) Random Forest Heavy Metals Predicted contamination levels with high
accuracy.
Johnson et al. (2023) | Neural Network PAHs Identified hotspot areas for soil pollution.
Brown (2024) Support Vector Machines | POPs Evaluated model performance using
cross-validation.
Lee (2021) Decision Tree Pesticides Classified contaminated vs. non-contaminated
areas.
Garciaetal. (2022) Gradient Boosting VOCs Predicted soil pollutant concentrations.
Wang et al. (2023) CNN (Convolutional Microplastics Detected microplastic
Neural Network) presence.
Table 5 : Diverse models for erosion prediction.
Reference Method/Model Type of erosion | Key Findings
Mosavi et al. (2020) | Weighted Subspace Random | Water Erosion | Predicted erosion risk with high accuracy.
Forest (WSRF) Identified vulnerable areas for targeted

conservation efforts.

Gaussian Process with Radial
Basis Function Kernel
(Gaussprradial)

Arabameri etal.
(2020)

Water Erosion

Quantified soil loss rates and prioritized
erosion-prone regions.

Gayenetal. (2019) | Naive Bayes (NB) Water Erosion | Classified land cover types based on erosion
susceptibility. Highlighted factors contributing
to erosion.
Pourghasemietal. |Random Forest (RF) Soil Erosion Developed a soil erosion risk map considering
(2017) topographic, climatic and land use variables.
Rahmati etal. (2017) |Support Vector Machine Soil Erosion Predicted soil loss rates using remote sensing data.
(SVM) Validated model accuracy with field measurements.
VuDinh etal. (2021) | Convolutional Neural Water Erosion | Detected gully erosion features from high-
Network (CNN) resolution imagery.

transform data into higher dimensions, effectively
capturing non-linear patterns.

Research Gaps in Soil Science and Machine
Learning

While machine learning (ML) holds great promise
for advancing soil science, several critical research gaps
persist. Researchers must address these gaps to harness
ML effectively:

Parsimony and Overfitting : ML models, especially
complex ones, can overfit training data, leading to poor
generalization. Researchers need to strike a balance
between model complexity and parsimony. Parsimonious
models, which capture essential patterns without
unnecessary complexity, are essential. Achieving this
balance ensures robust predictions across diverse soil
contexts.

Interpretability of ML Models : Soil scientists

rely on interpretable models to gain insights into soil
processes. However, many ML algorithms (e.g., deep
neural networks) lack transparency. Research should
focus on developing interpretable ML techniques that
provide actionable insights. Explainable Al methods,
feature importance analysis and model visualization are
avenues to explore.

Data Quality and Quantity : High-quality soil data
are crucial for ML model training. However, soil data
are often sparse, heterogeneous and subject to
measurement errors. Researchers must address data
scarcity by exploring transfer learning, data augmentation,
and crowdsourcing. Additionally, integrating remote
sensing and ground-based observations can enhance data
quality.

Domain Specific Features : ML models require
relevant features to make accurate predictions. In soil
science, domain-specific features such as soil texture,
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mineralogy, and land use play crucial roles.Researchers
should focus on feature engineering tailored to soil
science. Domain knowledge integration and automated
feature selection techniques can identify relevant features
and develop novel representations.

Conclusion

In conclusion, our comprehensive analysis has shed
light on the profound impact of machine learning (ML)
applications in soil science. Through our exploration of
diverse research papers, we have uncovered a multitude
of ways in which ML techniques are revolutionizing our
understanding of soil dynamics.

From predicting soil properties to mapping soil organic
carbon and assessing contamination risks, ML methods
have proven to be indispensable tools in soil science
research. We have observed that advanced ML
algorithms, capable of capturing complex non-linear
relationships, consistently outperform simpler approaches,
thereby enhancing our ability to model and predict soil
behavior accurately.

However, our analysis also highlights several
important considerations. Precautions against overfitting
and the necessity of interpretability in advanced ML
models are critical for ensuring the reliability and
applicability of findings in soil science. Furthermore, the
need for high-quality and diverse soil data, coupled with
domain-specific feature engineering, underscores the
importance of interdisciplinary collaboration in advancing
ML applications in soil science.

As we move forward, addressing these challenges
will be paramount in harnessing the full potential of ML
to further our understanding of soil dynamics and support
sustainable land management practices. By fostering
continued research and innovation in this field, we can
leverage ML technologies to address pressing
environmental challenges and ensure the health and
productivity of our soils for generations to come.
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